Pages

Powered By Blogger

This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Jumat, 11 Januari 2013

WHAT IS IT JURNALISTIK !

Jurnalisme

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Kewartawanan atau jurnalisme (berasal dari kata journal), artinya catatan harian, atau catatan mengenai kejadian sehari-hari, atau bisa juga berarti suratkabar. Journal berasal dari istilah bahasa Latin diurnalis, yaitu orang yang melakukan pekerjaan jurnalistik.

Di Indonesia, istilah "jurnalistik" dulu dikenal dengan "publisistik". Dua istilah ini tadinya biasa dipertukarkan, hanya berbeda asalnya. Beberapa kampus di Indonesia sempat menggunakannya karena berkiblat kepada Eropa. Seiring waktu, istilah jurnalistik muncul dari Amerika Serikat dan menggantikan publisistik dengan jurnalistik. Publisistik juga digunakan untuk membahas Ilmu Komunikasi.Daftar isi [sembunyikan]
1 Aktivitas
2 Sejarah
3 Lihat pula
4 Pranala luar

[sunting]
Aktivitas

Kewartawanan dapat dikatakan "coretan pertama dalam sejarah". Meskipun berita seringkali ditulis dalam batas waktu terakhir, tetapi biasanya disunting sebelum diterbitkan.

Para wartawan seringkali berinteraksi dengan sumber yang kadangkala melibatkan konfidensialitas. Banyak pemerintahan Barat menjamin kebebasan dalam pemberitaan (pers).

Aktivitas utama dalam kewartawanan adalah pelaporan kejadian dengan menyatakan siapa, apa, kapan, di mana, mengapa dan bagaimana (dalam bahasa Inggris dikenal dengan 5W+1H) dan juga menjelaskan kepentingan dan akibat dari kejadian atau yang sedang hangat (trend). Kewartawanan meliputi beberapa media: koran, televisi, radio, majalah dan internet sebagai pendatang baru.
[sunting]
Sejarah

Pada awalnya, komunikasi antar manusia sangat bergantung pada komunikasi dari mulut ke mulut. Catatan sejarah yang berkaitan dengan penerbitan media massa terpicu penemuan mesin cetak oleh Johannes Gutenberg.

Di Indonesia, perkembangan kegiatan jurnalistik diawali oleh Belanda. Beberapa pejuang kemerdekaan Indonesia pun menggunakan kewartawanan sebagai alat perjuangan. Di era-era inilah Bintang Timoer, Bintang Barat, Java Bode, Medan Prijaji, dan Java Bode terbit.

Pada masa pendudukan Jepang mengambil alih kekuasaan, koran-koran ini dilarang. Akan tetapi pada akhirnya ada lima media yang mendapat izin terbit: Asia Raja, Tjahaja, Sinar Baru, Sinar Matahari, dan Suara Asia.

Kemerdekaan Indonesia membawa berkah bagi kewartawanan. Pemerintah Indonesia menggunakan Radio Republik Indonesia sebagai media komunikasi. Menjelang penyelenggaraan Asian Games IV, pemerintah memasukkan proyek televisi. Sejak tahun 1962 inilah Televisi Republik Indonesia muncul dengan teknologi layar hitam putih.

Masa kekuasaan presiden Soeharto, banyak terjadi pembreidelan media massa. Kasus Harian Indonesia Raya dan Majalah Tempo merupakan dua contoh kentara dalam sensor kekuasaan ini. Kontrol ini dipegang melalui Departemen Penerangan dan Persatuan Wartawan Indonesia (PWI). Hal inilah yang kemudian memunculkan Aliansi Jurnalis Independen yang mendeklarasikan diri di Wisma Tempo Sirna Galih, Jawa Barat. Beberapa aktivisnya dimasukkan ke penjara.

Titik kebebasan pers mulai terasa lagi saat BJ Habibie menggantikan Soeharto. Banyak media massa yang muncul kemudian dan PWI tidak lagi menjadi satu-satunya organisasi profesi.

Kegiatan kewartawanan diatur dengan Undang-Undang Pers Nomor 40 Tahun 1999 yang dikeluarkan Dewan Pers dan Undang-Undang Penyiaran Nomor 32 Tahun 2002 yang dikeluarkan oleh Komisi Penyiaran Indonesia atau KPI
[sunting]
Lihat pula
Aliansi Jurnalis Independen
Ikatan Jurnalis Televisi Indonesia
Yayasan Jurnalis Independen
Layanan blog
Wartawan
Hukum McLurg
Majalah
Media massa
Koran
Radio
Televisi

What is it EDUCATION !

Pendidikan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk memiliki kekuatan spiritual keagamaan, pengendalian diri, kepribadian, kecerdasan, akhlak mulia, serta keterampilan yang diperlukan dirinya dan masyarakat.
[sunting]
Filosofi pendidikan

Pendidikan biasanya berawal saat seorang bayi itu dilahirkan dan berlangsung seumur hidup. Pendidikan bisa saja berawal dari sebelum bayi lahir seperti yang dilakukan oleh banyak orang dengan memainkan musik dan membaca kepada bayi dalam kandungan dengan harapan ia bisa mengajar bayi mereka sebelum kelahiran.

Bagi sebagian orang, pengalaman kehidupan sehari-hari lebih berarti daripada pendidikan formal. Seperti kata Mark Twain, "Saya tidak pernah membiarkan sekolah mengganggu pendidikan saya."[rujukan?]

Anggota keluarga mempunyai peran pengajaran yang amat mendalam, sering kali lebih mendalam dari yang disadari mereka, walaupun pengajaran anggota keluarga berjalan secara tidak resmi.
[sunting]
Fungsi pendidikan

Menurut Horton dan Hunt, lembaga pendidikan berkaitan dengan fungsi yang nyata (manifes) berikut:
Mempersiapkan anggota masyarakat untuk mencari nafkah.
Mengembangkan bakat perseorangan demi kepuasan pribadi dan bagi kepentingan masyarakat.
Melestarikan kebudayaan.
Menanamkan keterampilan yang perlu bagi partisipasi dalam demokrasi.

Fungsi laten lembaga pendidikan adalah sebagai berikut.
Mengurangi pengendalian orang tua. Melalui pendidikan, sekolah orang tua melimpahkan tugas dan wewenangnya dalam mendidik anak kepada sekolah.
Menyediakan sarana untuk pembangkangan. Sekolah memiliki potensi untuk menanamkan nilai pembangkangan di masyarakat. Hal ini tercermin dengan adanya perbedaan pandangan antara sekolah dan masyarakat tentang sesuatu hal, misalnya pendidikan seks dan sikap terbuka.
Mempertahankan sistem kelas sosial. Pendidikan sekolah diharapkan dapat mensosialisasikan kepada para anak didiknya untuk menerima perbedaan prestise, privilese, dan status yang ada dalam masyarakat. Sekolah juga diharapkan menjadi saluran mobilitas siswa ke status sosial yang lebih tinggi atau paling tidak sesuai dengan status orang tuanya.
Memperpanjang masa remaja. Pendidikan sekolah dapat pula memperlambat masa dewasa seseorang karena siswa masih tergantung secara ekonomi pada orang tuanya.

Menurut David Popenoe, ada empat macam fungsi pendidikan yakni sebagai berikut:
Transmisi (pemindahan) kebudayaan.
Memilih dan mengajarkan peranan sosial.
Menjamin integrasi sosial.
Sekolah mengajarkan corak kepribadian.
Sumber inovasi sosial.

Senin, 10 Desember 2012

Candi Cangkuang

Candi Cangkuang
Candi Cangkuang terletak di Kampung Pulo, Desa Cangkuang , Kecamatan Leles, Kabupaten Garut. Desa Cangkuang dikelilingi oleh empat gunung besar di Jawa Barat, yang antara lain Gunung Haruman, Gunung Kaledong, Gunung Mandalawangi dan Gunung Guntur. Nama Candi Cangkuang diambil dari nama desa tempat candi ini berada. Kata 'Cangkuang' sendiri adalah nama tanaman sejenis pandan (pandanus furcatus), yang banyak terdapat di sekitar makam, Embah Dalem Arief Muhammad, leluhur Kampung Pulo. Daun cangkuang dapat dimanfaatkan untuk membuat tudung, tikar atau pembungkus gula aren. 
Cagar budaya Cangkuang terletak di sebuah daratan di tengah danau kecil  (dalam bahasa Sunda disebut situ), sehingga untuk mencapai tempat tersebut orang harus menggunakan rakit. Selain candi, di pulau itu juga terdapat pemukiman adat Kampung Pulo, yang juga menjadi bagian dari kawasan cagar budaya.
Candi Cangkuang ditemukan kembali oleh Tim Sejarah Leles pada tanggal 9 Desember 1966. Tim penelitian yang disponsori oleh Bapak Idji Hatadji (CV. Haruman) ini diketuai oleh Prof. Harsoyo,  Uka Tjandrasasmita (ketua penelitian sejarah Islam dan lembaga kepurbakalaan),  dan mahasiswa dari IKIP Bandung. Penelitian dilaksanakan berdasarkan tulisan Vorderman dalam buku Notulen Bataviaasch Genotschap terbitan tahun 1893 yang menyatakan bahwa di Desa Cangkuang terdapat makam kuno  dan sebuah arca yang sudah rusak.  Disebutkan bahwa temuan itu berlokasi di bukit Kampung Pulo.



Makam dan  arca Syiwa yang dimaksud memang diketemukan. Pada awal penelitian terlihat adanya batu yang merupakan reruntuhan sebuah bangunan candi. Makam kuno yang dimaksud adalah makam Arief Muhammad  yang dianggap penduduk setempat sebagai leluhur mereka.
 Pada awal penelitian terlihat adanya batu yang merupakan reruntuhan  bangunan candi dan di sampingnya terdapat  sebuah makam kuno berikut sebuah arca Syiwa yang terletak di tengah reruntuhan bangunan. Dengan ditemukannya batu-batu andesit berbentuk balok, tim peneliti yang dipimpin Tjandrasamita merasa yakin bahwa di sekitar tempat tersebut semula terdapat sebuah  candi.  Penduduk setempat seringkali menggunakan balok-balok tersebut untuk batu nisan.
Berdasarkan keyakinan tersebut, peneliti melakukan penggalian di lokasi tersebut. Di dekat kuburan Arief Muhammad peneliti menemukan fondasi candi berkuran 4,5 x 4,5 meter dan batu-batu candi lainnya yang berserakan.
 Dengan penemuan tersebut Tim Sejarah dan Lembaga Kepurbakalaan segera  melaksanakan  penelitian didaerah tersebut. Hingga tahun 1968 penelitian masih terus berlangsung. Proses pemugaran Candi dimulai pada tahun 1974-1975 dan pelaksanaan rekonstruksi dilaksanakan pada tahun 1976 yang meliputi kerangka badan, atap dan patung Syiwa serta dilengkapi dengan sebuah joglo museum dengan maksud untuk dipergunakan menyimpan dan menginventarisir benda-benda bersejarah bekas peninggalan kebudayaan dari seluruh Kabupaten Garut. Dalam pelaksanaan pemugaran pada tahun 1974 telah ditemukan kembali batu candi yang merupakan bagian-bagian dari kaki candi.   Kendala utama rekonstruksi candi adalah batuan candi yang ditemukan hanya sekitar 40% dari aslinya, sehingga batu  asli yang digunakan merekonstruksi  bangunan candi tersebut hanya sekitar 40%. Selebihnya dibuat dari adukan semen, batu koral, pasir dan besi.  
Candi Cangkuang merupakan candi pertama dipugar, dan juga untuk mengisi kekosongan sejarah antara Purnawarman dan Pajajaran. Para ahli menduga bahwa Candi Cangkuang didirikan pada abad ke-8, didasarkan pada:
1. tingkat kelapukan batuannya;
2. kesederhanaan bentuk (tidak adanya relief).





Setelah dipugar, Candi Cangkuang  mempunyai ukuran yang sesuai dengan keadaan alamnya. Tinggi bangunan sampai ke puncak atap adalah 8,5 m. Tubuh candi berdiri di atas kaki  berdenah bujur sangkar berukuran 4,5 X 4,5 m.  Atap candi bersusun-susun membentuk piramid. Sepanjang tepian setiap susunan dihiasi semacam mahkota-mahkota kecil, mirip yang terdapat di candi-candi Gedongsanga.
Pintu masuk ke  ruangan dalam tubuh candi terletak di sisi timur. Untuk mencapai pintu terdapat tangga selebar sekitar 75 cm setinggi sekitar 1 m. Pintu masuk tersebut diapit dinding yang membentuk bingkai pintu. Tidak terdapat hiasan pahatan pada bingkai pintu. 
Saat ini di ambang pintu masuk ke ruangan tersebut telah dipasang pintu berterali besi yang terkunci.Dalam candi terdapat ruangan  seluas  2,2 m2 dengan tinggi  3,38 m.  Di tengah ruangan terdapat arca Syiwa setinggi 62 cm. Konon tepat di bawah patung terdapat lubang sedalam 7 m, namun hal itu tidak dapat dibuktikan karena pengunjung tidak diperkenankan masuk ke ruangan.


Pemukiman adat Kampung Pulo
Kampung Pulo merupakan sebuah kampung kecil, terdiri dari enam buah rumah dan enam kepala keluarga. Sudah menjadi ketentuan adat bahwa jumlah rumah dan kepala keluarga itu harus enam orang dengan susunan tiga rumah disebelah kiri dan tiga rumah disebelah kanan yang saling berhadapan ditambah satu masjid sebagai tempat ibadah.
Oleh sebab itu kedua deretan rumah tersebut tidak boleh ditambah ataupun dikurangi.

Jika seorang anak sudah dewasa kemudian nikah maka paling lambat dua minggu setelah pernikahan harus meninggalkan rumah tempat asalnya, keluar dari lingkungan keenam rumah adat tersebut. Dia bisa kembali keasalnya bila salah satu keluarga meninggal dunia dengan syarat harus anak wanita dan ditentukan atas pemilihan keluarga setempat.

Embah Dalem Arief Muhammad
Embah Dalem Arief Muhammad serta masyarakat setempat yang telah membendung daerah ini, sehingga terbentuk sebuah danau dengan nama Situ Cangkuang. Setelah daerah ini selesai dibendung, maka dataran yang rendah menjadi danau, dan bukit-bukit menjadi pulau-pulau. Pulau tersebut antara lain Pulau Panjang (dimana kampung pulo ada), Pulau Gede, Pulau Leutik (kecil), Pulau Wedus, Pulau Katanda, dan Pulau Masigit. Embah Dalem Arief Muhammad berasal dari Kerajaan Mataram, Jawa Timur. Ia dan pasukannya datang dengan tujuan untuk menyerang tentara VOC di Batavia dan menyebarkan agama Islam di Desa Cangkuang.
Desa Cangkuang, khususnya Kampung Pulo,  waktu itu sudah dihuni oleh penduduk yang menganut agama Hindu. Hal itu terbukti dari adanya candi Hindu yang sekarang telah dipugar. Metode dakwah yang dilakukan Arief Muhammad tidak jauh dari pola dakwah Wali Songo. Secara bijaksana Embah Dalem Arief Muhammad mengajak masyarakat setempat untuk menganut Islam.
 Pedoman dakwah yang diajarkan oleh Arief Muhammad berprinsip pada ajaran Islam yang tidak mengenal kekerasan dan paksaan, melainkan dengan perdamaian dan keikhlasan hati. Ajaran-ajaran yang disampaikan dan ditulis Arief Muhammad dalam naskah-naskah tidak berbeda dengan apa yang kita dapatkan dari para ulama sekarang ini. Dengan mengacu pada Al-Qur’an dan Hadits, beliau mengajarkan berbagai hal untuk menghadapi segala kehidupan membentuk pribadi umat menjadi muslim yang sejati dengan mentauhidkan Allah SWT, berakhlak baik, dan meninggalkan apa yang dilarang oleh Allah SWT.

Adapun hal-hal yang membuktikan adanya penyebaran Islam yang dilakukan pada permulaan abad XVII, antara lain :
  1. Naskah Khotbah Jum’at yang terbuat dari kulit kambing dengan memiliki ukuran 176 X 23 cm. Walaupun terlihat agak sedikit rusak, namun tulisan dalam naskah tersebut masih terbaca jelas.
  2. Kitab Suci Al Qur’an yang terbuat dari kulit kayu (saih) dengan memiliki ukuran 33 X 24 cm. Karena sudah dimakan usia, kondisi kitab ini terlihat sobek. Walau demikian kitab Al Qur’an ini masih bisa dibaca dengan jelas.
  3. Kitab Ilmu Fikih yang terbuat dari bahan kulit kayu (saih) dengan memiliki ukuran 26 X 18,5 cm.
  4. Makam Embah Dalem Arief Muhammad yang berada disebelah selatan Candi Cangkuang. Hal ini menunjukkan bahwa adanya kerukunan hidup beragama di Nusantara sudah terbina sejak ratusan tahun yang lalu
Para penduduk Kampung Pulo berangsur-angsur menganut agama Islam, tapi sebagian kepercayaan lamanya masih mereka laksanakan. Sebagai contoh,  hari Rabu menjadi hari besar bagi mereka, dan bukan hari Jum’at. 

Kamis, 27 September 2012

KARINDING -hinis warisan urang sunda


karinding






Store


 

Karinding (カリンディン)
Karinding Kawung (Palm Midrib)Karinding Bambu (Bamboo)


Karinding merupakan salah satu alat musik tiup tradisional Sunda. Ada beberapa tempat yang biasa membuat karinding, seperti di lingkung Citamiang, Pasirmukti, Tasikmalaya, Lewo Malangbong, (Garut), dan Cikalongkulon (Cianjur) yang dibuat dari pelepah kawung (enau). Di Limbangan dan Cililin karinding dibujat dari bambu, dan yang menggunakannya adalah para perempuan, dilihat dari bentuknya saperti tusuk biar mudah ditusukan di sanggul rambut. Dann bahan enau kebanyakan dipakai oleh lelaki, bentuknya lebih pendek biar bisa diselipkan dalam wadah rokok. Bentuk karinding ada tiga ruas.

 Cara Memainkan

Karinding disimpan di bibir, terus tepuk bagian pemukulnya biar tercipta resonansi suara. Karindng biasanya dimainkan secara solo atau grup (2 sampai 5 orang). Seroang diantaranya disebut pengatur nada anu pengatur ritem. Di daerah Ciawi, dulunya karinding dimainkan bersamaan takokak (alat musik bentuknya mirip daun).

 Fungsinya

Karinding yaitu alat buat mengusir hama di sawah. Suara yang dihasilkan dari getaran jarum karinding biasanya bersuara rendah low decible. Suaranya dihasilkan dari gesekan pegangan karinding dan ujung jari yang ditepuk-tepakkan. Suara yang keluar biasanya terdengar seperti suara wereng, belalang, jangkrik, burung, dan lain-lain. Yang jaman sekarang dikenal dengan istilah ultrasonik. Biar betah di sawah, cara membunyikannya menggunakan mulut sehingga resonansina menjadi musik. Sekarang karinding biasa digabungkan dengan alat musik lainnya.
Bedanya membunyikan karinding dengan alat musik jenis mouth harp lainnya yaitu pada tepukan. Kalau yang lain itu disentil. Kalau cara ditepuk dapat mengandung nada yang berbeda-beda. Ketukan dari alat musik karinding disebutnya Rahel, yaitu untuk membedakan siapa yang lebih dulu menepuk dan selanjutnya. Yang pertama menggunakan rahèl kesatu, yang kedua menggunakan rahel kedua, dan seterusnya. Biasanya suara yang dihasilkan oleh karinding menghasilkan berbagai macam suara, diantaranya suara kendang, goong, saron bonang atau bass, rhytm, melodi dan lain-lain. Bahkan karinding bisa membuat lagu sendiri, sebab cara menepuknya beda dengan suara pada mulut yang bisa divariasikan bisa memudahkan kita dalam menghasilkan suara yang warna-warni. Kata orang tua dahulu, dulu menyanyikan lagu bisa pakai karinding, Kalau kita sudah mahir mainkan suara karinding, pasti akan menemukan atau menghasilkan suara buat berbicara, tetapi suara yang keluar seperti suara robotik.

Minggu, 17 Juni 2012

Sekolah Kita

Kamis, 28 Januari 2010

Difusi

Sekolah KitaPengantar
Pernah lihat asap ? asap rokok, asap knalpot, asap pabrik, asap hasil pembakaran sampah dkk…. Kalau kita perhatikan secara saksama, asap yang ngepul dari ujung rokok yang terbakar atau asap yang nyembur dari knalpot motor butut biasanya mula-mula masih bisa kita lihat… setelah beberapa saat, asap tidak bisa kita lihat lagi… aneh bin ajaib  si asap jalan-jalan ke mana ya ? Ada lagi contoh yang lain… Pernah pakai parfum ? ya pernah dong gurumuda, masa ya pernahlah  Walaupun dirimu nyemprot parfum di kamar pribadi, masilnya, ibu atau ayah mu di kamar sebelah bisa ikut2an menikmati keharuman parfum kesayanganmu… Pacar kesayangan yang lagi nunggu di ruang tamu juga bisa kebagian rejeki… wah, harumnya pacarku… malam mingguannya pasti asyik neh  hiks2… Kalau ibu lagi memasak makanan yang lezat dan mengundang selera di dapur, aroma masakan bisa dirasakan dari rumah tetangga… Mengapa bisa demikian ya ?
Masih banyak contoh lain… kalau dirimu memasukkan beberapa tetes tinta atau pewarna makanan ke dalam gelas yang berisi air bening, biasanya tinta atau pewarna makanan akan menyebar secara merata ke seluruh air… ingat ya, hal ini terjadi secara otomatis… kelihatannya sepele, tetapi sangat mengagumkan…
DIFUSI
Contoh yang telah gurumuda ulas sebelumnya merupakan beberapa peristiwa difusi yang sering kita alami dalam kehidupan sehari-hari… Difusi tuh apaan sich ? sejenis gorengan-kah ?  Difusi tuh proses berpindahnya molekul-molekul zat dari tempat yang berkonsentrasi tinggi menuju tempat yang berkonsentrasi rendah… Yang dimaksudkan dengan konsetrasi di sini adalah banyaknya molekul/mol zat per volume. Tempat yang berkonsentrasi tinggi adalah tempat di mana terdapat banyak molekul zat per volume. Sebaliknya tempat yang berkonsetrasi rendah adalah tempat di mana terdapat sedikit molekul atau bahkan tidak ada molekul per volume.
Ketika dirimu membakar sampah, biasanya konsentrasi asap di sekitar tempat pembakaran sampah cukup tinggi… Ketika seseorang merokok, tempat di sekitar ujung rokok yang terbakar biasanya memiliki konsetrasi asap yang tinggi… Karena terdapat perbedaan konsentrasi, maka molekul-molekul asap secara otomatis menyebar dari tempat yang berkonsetrasi tinggi menuju tempat yang berkonsetrasi rendah… Molekul-molekul asap yang pada mulanya ngumpul bareng akhirnya tercerai berai ke segala arah…
Ketika dirimu menyemprot parfum ke tubuh, tempat di mana parfum tersebut disemprot memiliki konsentrasi yang tinggi… karena terdapat perbedaan konsentrasi, maka molekul-molekul parfum bergerak dari tempat yang berkonsetrasi tinggi menuju tempat yang berkonsetrasi rendah… Pacar kesayangan yang lagi menunggu di ruang tamu pun kebagian rejeki… Seandainya molekul-molekul parfum tidak sampai pada tempat di mana pacarmu berada, tentu saja pacarmu tidak bisa menikmati harumnya parfum kesayanganmu…
Ketika dirimu memasukkan beberapa tetes tinta atau pewarna makanan ke dalam gelas yang berisi air bening, bagian air yang pertama kali ditetesi tinta atau pewarna makanan biasanya memiliki konsentrasi yang lebih tinggi… Karena terdapat perbedaan konsentrasi maka molekul-molekul tinta atau molekul-molekul pewarna makanan menyebar ke seluruh bagian air yang memiliki konsentrasi rendah… Proses difusi akan terhenti setelah konsentrasi molekul tinta dalam semua bagian air sama.
Perlu diketahui bahwa proses difusi bisa dijelaskan menggunakan teori kinetic (Teori kinetic mengatakan bahwa setiap zat terdiri dari molekul-molekul dan molekul-molekul tersebut bergerak terus menerus secara acak). Untuk lebih memahami hal ini, gurumuda menggunakan ilustrasi saja… tataplah gambar di bawah dengan penuh kelembutan…
Anggap saja ini gambar sebuah wadah yang berbentuk silinder, di mana semua bagian wadah penuh terisi air. Karena ditetesi tinta, maka air yang berada di permukaan wadah memiliki konsentrasi yang lebih tinggi daripada air yang ada di bagian dasar…

C1 adalah bagian silinder atau bagian air yang memiliki konsentrasi tinggi, sedangkan C2 adalah bagian silinder atau bagian air yang memiliki konsentrasi rendah… Untuk mempermudah analisis maka kita hanya meninjau gerakan molekul-molekul tinta pada bagian tengah silinder (delta x).
Jumlah molekul-molekul tinta pada C1 lebih banyak (konsentrasi tinggi) daripada molekul-molekul tinta pada C2 (konsentrasi rendah). Karena molekul-molekul tinta bergerak terus menerus secara acak, maka molekul-molekul tinta yang berada di C1 mempunyai kemungkinan yang lebih besar untuk bergerak menuju bagian tengah silinder (delta x). Sebaliknya, jumlah molekul-molekul tinta yang berada di C2 sangat sedikit sehingga mempunyai kemungkinan yang sangat kecil untuk bergerak menuju bagian tengah silinder (delta x). Dengan demikian, akan ada aliran total molekul-molekul tinta dari C1 menuju C2… Nah, sesuai dengan penelitian yang dilakukan oleh seorang ahli fisiologi yang bernama om Adolf Fick (1829-1901), ditemukan bahwa laju difusi sebanding alias berbanding lurus dengan perbedaan konsentrasi (C2-C1). Semakin besar perbedaan konsentrasi, semakin besar laju aliran molekul-molekul zat. Sebliknya, semakin kecil perbedaan konsentrasi, semakin kecil laju aliran molekul-molekul zat. Hal ini mungkin sesuai dengan dugaan kita bahwa perbedaan konsentrasi turut mempengaruhi laju aliran molekul-molekul…
Catatan :
Selain berpindah tempat dengan cara difusi, molekul-molekul zat (khususnya zat gas) juga bisa mengungsi dari satu tempat ke tempat lain menggunakan bantuan angin.
Penerapan Difusi dalam kehidupan sehari-hari
Seandainya tidak ada difusi, pacar kesayangan tidak bisa menikmati harumnya parfummu. Tanpa difusi, aroma masakan ibu di dapur yang lezat dan mengundang selera juga tidak bisa membuyarkan lamunanmu dan pingin secepatnya menghabiskan santapan bergizi yang tersedia di meja makan ;) hiks2… Masih banyak contoh lain… Btw, difusi juga memiliki peran yang sangat penting bagi kelangsungan hidup manusia, hewan, tumbuhan dkk…
Tumbuh-tumbuhan biasanya membutuhkan karbondioksida (CO2) untuk melakukan fotosintesis. Karena terdapat perbedaan konsentrasi CO2 antara bagian dalam daun dengan udara luar, maka molekul-molekul CO2 berbondong-bondong mengungsi ke dalam daun. Si CO2 berdifusi ke dalam daun melalui stomata… lega rasanya, kata daun. Untung ada difusi, kalau tidak diriku bisa mati karena kekurangan CO2 ;) Sebaliknya, uap air dan oksigen berdifusi keluar…
Selain tumbuhan, kucing, tikus dkk juga bisa mati lemas jika tidak ada difusi… Kalau tumbuhan membutuhkan CO2 untuk melakukan fotosintesis, maka kucing, tikus dkk membutuhkan oksigen untuk setiap reaksi yang menghasilkan energi… agar bisa tiba dengan selamat dalam sel-sel maka molekul-molekul oksigen tentu saja menggunakan cara difusi…
Na, sekarang giliran manusia… dirimu dan diriku juga bisa mati lemas jika tidak ada difusi… biasanya manusia menyedot oksigen melalui proses pernafasan. Setelah tiba dengan selamat di paru-paru, oksigen berdifusi menuju darah. Selanjutnya darah akan menghantar molekul-molekul oskigen menuju sel-sel tubuh. Setelah menghantar molekul-molekul oskigen menuju sel-sel tubuh, darah menggiring molekul-molekul karbondioksida yang dihasilkan sel-sel tubuh menuju paru-paru. Selanjutnya molekul-molekul karbondioskida berbondong-bondong melakukan difusi menuju udara luar. Selengkapnya bisa dipelajari pada mata pelajaran kimia, biologi dkk… bye ;)
Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Hukum Hukum Gas

Sekolah Kita

Kamis, 28 Januari 2010

                                                                      Hukum Hukum Gas

Sekolah KitaPengantar
Dirimu pernah mendaki gunung kah ? kalau belum, mungkin pernah jalan-jalan ke puncak ? Biasanya udara di puncak lebih dingin. Siang hari saja sudah dingin apalagi malam hari… Kalau tidur tidak ditemani selimut, dirimu akan kedinginan sepanjang malam. Katanya di puncak gunung Jayawijaya (di Papua) atau puncak mount everest, suhu udara sangat dingin sehingga semuanya pada membeku. Kalau pingin es batu gratis, silahkan mendaki kedua gunung tersebut. Biasanya hanya orang-orang tangguh saja yang bisa sampai di puncak… Apalagi mount everest. Ada dua kemungkinan kalau orang mendaki mount everest : pulang dengan selamat atau “pergi” dengan tenang. Kemungkinan besar “pergi” dengan tenang
Aneh ya, mengapa udara di puncak lebih dingin ? Seharusnya udara di puncak lebih panas karena puncak khan lebih dekat dengan matahari. Tapi kenyataannya tidak seperti itu… Semakin tinggi suatu tempat diukur dari permukaan laut, semakin rendah suhu udara di tempat tersebut. Mengapa bisa demikian ?
Mengapa pokok bahasan ini disebut Teori kinetik gas ?
Pada pembahasan mengenai wujud-wujud zat (Ditinjau dari sifat mikroskopis), gurumuda telah mengulas perbedaan antara zat padat, zat cair dan zat gas berdasarkan sifat dan perilaku atom atau molekul penyusunnya. Gaya tarik (gaya elektromagnetik) antara atom-atom atau molekul-molekul penyusun zat padat sangat kuat sehingga mereka selalu bergetar pada posisi yang sama dan tetap berada dalam satu kesatuan. Istilah kerennya, mereka tidak tercerai berai alias tetap ngumpul. Lebih asyik ngumpul katanya… makan gak makan asal ngumpul  Ini yang menjadi alasan mengapa bentuk batu, besi, timah, emas dkk tampak padat. Semua bagian zat padat seolah-olah saling menempel.
Berbeda dengan zat padat, gaya tarik antara atom-atom atau molekul-molekul penyusun zat cair kurang kuat. Akibatnya, atom atau molekul penyusun zat cair bisa bergerak lebih bebas dan tumpang tindih dengan teman-temannya. Jadi tidak perlu heran mengapa air, minyak tanah, bensin dkk kelihatan cair dan bentuknya pun bisa berubah-ubah sesuai dengan wadah yang ditempatinya. Btw, walaupun bentuk zat cair bisa berubah-ubah, volume zat cair biasanya tetap. Hal ini dikarenakan gaya tarik antara atom atau molekul penyusun zat cair masih mampu menahan mereka untuk tetap ngumpul alias tidak tercerai berai.
Zat gas mau beda sendiri. Gaya tarik antara atom atau molekul penyusun zat gas sangat lemah. Akibatnya atom-atom atau molekul-molekul penyusun zat gas bisa bergerak sesuka hatinya dan dengan seenaknya mengucapkan selamat tinggal kepada temannya. Ketika mereka berpapasan pun paling cuma ciuman sebentar, setelah itu pisah lagi. Malas ngumpul katanya… lebih enak hidup sendiri…  Gaya tarik yang sangat lemah ini yang membuat atom-atom atau molekul-molekul penyusun zat gas tercerai berai sehingga lenyap dari penglihatan kita. Sampai di sini dirimu mual-mual atau pusink-pusink tidak ? hiks2… piss…
Karena atom-atom atau molekul-molekul penyusun zat gas bisa bergerak sesuka hatinya, maka pembahasan kita selanjutnya lebih difokuskan pada zat gas. Situasi untuk zat padat dan zat cair lebih beribet dan analisis kita pun akan menjadi lebih sulit. Jadi dirimu tidak perlu heran mengapa bagian ini disebut teori kinetik gas. Teori kinetik gas sebenarnya merupakan pengembangan dari teori kinetik. Teori kinetik mengatakan bahwa setiap zat terdiri dari atom-atom atau molekul-molekul dan atom-atom atau molekul-molekul tersebut bergerak terus menerus secara sembarangan. Dugaan teori kinetik ini cocok untuk situasi dan kondisi atom atau molekul penyusun zat gas.
Ketika bergerak, atom atau molekul penyusun zat gas pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK) dan momentum (p). Energi kinetik : EK = ½ mv2. Sedangkan momentum : p = mv. Kayanya bukan cuma energi kinetik (EK) dan momentum (p) saja, tetapi gaya (F) juga. Atom atau molekul khan jumlahnya banyak tuh. Ketika mereka bergerak ke sana kemari, pasti ada kemungkinan terjadi tumbukan. Jadi gaya muncul karena adanya perubahan momentum ketika terjadi tumbukan. Ingat lagi pembahasan mengenai impuls dan momentum.
Kita bisa mengatakan bahwa teori kinetik gas sebenarnya didasarkan pada energi kinetik, momentum dan gaya. Ketiga hal ini yang kita pelajari pada pokok bahasan dinamika gerak (hukum newton, impuls dan momentum). Bedanya, dalam teori kinetik gas kita menerapkan ilmu dinamika pada tingkat atom atau molekul penyusun zat gas.
Sifat makroskopis dan mikroskopis zat gas
Dirimu masih ingat materi suhu dan kalor tidak ? Kalau lupa, saran terbaik dari gurumuda adalah segera meluncur ke TKP dan pelajari kembali. Pokok bahasan suhu dan kalor + Teori kinetik gas tuh saling berkaitan. Bedanya, dalam pokok bahasan suhu dan kalor kita menganalisis keadaan suatu benda (termasuk gas) berdasarkan ukuran besar alias sifat makroskopisnya. Sedangkan dalam pokok bahasan teori kinetik gas, kita menganalisis keadaan suatu benda (terutama gas) berdasarkan ukuran kecil alias sifat mikroskopisnya. Kalau bingung dengan istilah makroskopis dan mikroskopis, pahami penjelasan gurumuda berikut ini…..
Misalnya udara… Ketika kita mengatakan : udara panas sekali (suhu udara tinggi), apa yang kita katakan mungkin hanya didasarkan pada hasil pengukuran (kita mengukur suhu udara menggunakan termometer) atau apa yang dirasakan tubuh. Kita tidak tahu apa yang terjadi dengan atom-atom atau molekul-molekul penyusun udara, sehingga udara bisa panas. Jadi ketika kita mengatakan udara panas sekali (suhu udara tinggi), sebenarnya kita hanya meninjau udara berdasarkan sifat makroskopis saja. Apabila yang kita analisis adalah massa, kecepatan, energi kinetik dan momentum atom-atom atau molekul-molekul penyusun udara, maka kita dikatakan meninjau udara berdasarkan sifat mikroskopis. Sampai di sini du yu andersten ? ;)
Nah, sifat makroskopis zat gas bisa diukur secara langsung, sedangkan sifat mikroskopis tidak bisa diukur secara langsung. Besaran-besaran yang menyatakan sifat makroskopis zat gas adalah suhu alias temperatur, volume, tekanan. Suhu udara bisa kita ukur menggunakan termometer. Volume udara juga bisa kita ukur. Kalau dirimu niup balon, biasanya semakin banyak udara yang masuk ke dalam balon, balon semakin mengembung. Dalam hal ini volume balon bertambah akibat adanya peningkatan volume udara dalam balon. Demikian juga ketika dirimu menambah angin pada ban mobil atau ban sepeda motor. Setelah mendapat sumbangan angin, ban yang pada mulanya kempis menjadi gemuk (volume ban bertambah). Selain suhu dan volume, tekanan udara juga bisa diukur. Masih ingat materi fluida statis ? Pada pokok bahasan Tekanan pada fluida, gurumuda sudah menjelaskan panjang lebar mengenai tekanan udara dan bagaimana mengukur tekanan udara.
Pada kesempatan ini, terlebih dahulu kita bahas besaran-besaran yang menyatakan sifat makroskopis zat gas, seperti suhu, volume, tekanan dan bagaimana hubungan antara besaran-besaran tersebut. Hubungan antara sifat makroskopis (suhu, volume, tekanan zat gas) dan sifat mikroskopis (kecepatan, energi kinetik, momentum atom/molekul penyusun zat gas) akan kita oprek pada episode berikutnya…
Hubungan antara Suhu (T) dan Volume (V)
Dalam pokok bahasan suhu dan kalor, kita mengenal besaran suhu alias temperatur (T). Suhu alias temperatur merupakan ukuran panas atau dinginnya suatu benda… Selain suhu, kita juga mengenal besaran volume (V). Suhu udara dan volume udara memiliki keterkaitan. Volume udara bisa berubah apabila suhu udara berubah. Jika suhu udara meningkat, maka volume udara bertambah (udara memuai)… Sebaliknya kalau suhu udara menurun, maka volume udara akan berkurang (udara menyusut). Ingat lagi pokok bahasan pemuaian (materi suhu dan kalor). Kita bisa mengatakan bahwa suhu udara berbanding lurus alias sebanding dengan volume udara. Secara matematis bisa ditulis seperti ini :

Hubungan antara Tekanan (P) dan Suhu (T)
Selain suhu dan volume, ada juga besaran tekanan (P). Masih ingat pokok bahasan fluida statis ? Dalam fluida statis, gurumuda sudah menjelaskan secara panjang pendek mengenai tekanan (P), khususnya tekanan udara. Ingat ya, tekanan fluida (zat cair atau gas) selalu bertambah terhadap kedalaman atau semakin berkurang terhadap ketinggian. Misalnya air yang berada di dasar wadah memiliki tekanan yang lebih besar daripada air yang berada di permukaan wadah. Jadi tekanan air di dasar lebih besar daripada di permukaan. Demikian juga dengan udara… “Dasar udara” tuh ada di permukaan laut atau dekat tepi pantai. Semakin ke atas, tekanan udara semakin kecil… Apalagi di puncak gunung…
Biasanya udara di puncak gunung lebih dingin (suhu udara lebih rendah). Demikian juga tempat-tempat yang letaknya di dataran tinggi (Bandung dkk). Sebaliknya tempat-tempat yang lebih dekat dengan permukaan laut (jakarta, surabaya, semarang, makasar, yogya) lebih panas. Berdasarkan kenyataan ini, kita bisa menyimpulkan bahwa suhu (T) dan tekanan (P) memiliki hubungan. Semakin besar tekanan udara, semakin tinggi suhu udara tersebut (udara makin panas). Sebaliknya, semakin kecil tekanan udara, semakin rendah suhu udara tersebut (udara makin dingin). Dengan kata lain, tekanan udara berbanding lurus alias sebanding dengan suhu udara. Secara matematis bisa ditulis seperti ini :
Hubungan antara Tekanan (P) dan Volume (V)
Untuk membantu meninjau hubungan antara tekanan (P) dan volume (V), gurumuda ingin mengajakmu berimajinasi sejenak. Amati gambar di bawah… Permukaan wadah yang berwarna biru bisa digerakkan naik turun. Di dalam wadah ada udara. Volume udara dalam wadah 1 (volume 1) lebih besar dari volume udara dalam wadah 2 (volume 2). Volume udara dalam wadah 2 (volume 2) lebih besar dari volume udara dalam wadah 3 (volume 3). Jadi volume 1 > volume 2 > volume 3.
Catatan :
Gambar ini disederhanakan menjadi 2 dimensi. Btw, anggap saja ini gambar 3 dimensi (volume = panjang x lebar x tinggi).

Mula-mula permukaan wadah yang berwarna biru diam alias tidak bergerak (gambar 1). Ketika permukaan wadah yang berwarna biru didorong ke bawah dengan gaya F1, volume udara dalam wadah menjadi lebih kecil (gambar 2). Didorong lagi ke bawah dengan gaya F2, volume udara menjadi semakin kecil (volume 3). Ingat ya, untuk membuat volume udara menjadi lebih kecil tentu saja diperlukan gaya dorong yang lebih besar. Jadi gaya F2 tentu saja lebih besar dari F1.
Sekarang tataplah persamaan di bawah :
Luas permukaan wadah sama, karenanya besar Tekanan (P) hanya dipengaruhi oleh gaya (F) saja. Berdasarkan persamaan di atas, tampak bahwa Tekanan berbanding lurus dengan Gaya. Semakin besar Gaya, semakin besar Tekanan. Karena gaya F2 lebih besar dari gaya F1 , maka Tekanan udara pada wadah 3 (gambar 3) tentu saja lebih besar dari Tekanan udara pada wadah 2 (gambar 2). Jadi P3 > P2. Sebaliknya, volume udara pada wadah 3 (gambar 3) malah lebih kecil daripada volume udara pada wadah 2 (gambar 2). Bahasa gaulnya V3 <>2. Kita bisa mengatakan bahwa Tekanan udara (P) berbanding terbalik dengan volume udara (V). Semakin besar tekanan udara, semakin kecil volume udara tersebut. Sebaliknya semakin kecil tekanan udara, semakin besar volume udara tersebut. Secara matematis ditulis seperti ini :
Sejauh ini kita masih meninjau hubungan antara suhu, volume dan tekanan secara terpisah. Pertama kita hanya meninjau hubungan antara Suhu (T) dan volume (V) saja. Setelah itu kita meninjau hubungan antara Tekanan (P) dan Suhu (T). Terakhir kita meninjau hubungan antara Tekanan (P) dan Volume (V). Perlu diketahui bahwa suhu, volume dan tekanan gas memiliki keterkaitan erat. Ketiga besaran ini saling mempengaruhi. Apabila salah satu besaran berubah, kedua besaran lain akan berubah. Misalnya ketika suhu gas mengalami perubahan, volume dan tekanan gas ikut2an berubah. Apabila tekanan gas berubah, maka suhu dan volume zat gas juga ikut2an berubah. Masalahnya sekarang kita tidak tahu secara pasti seberapa besar perubahan yang terjadi. Kalau suhu gas bertambah 3oC, misalnya, besarnya perubahan yang dialami oleh volume dan tekanan tuh berapa ? Minimal harus bisa dihitung… Berdasarkan kenyataan ini, alangkah baiknya jika tinjau hubungan kuantitatif antara suhu, volume dan tekanan.
Catatan :
Hubungan kuantitatif = hubungan yang bisa dinyatakan dengan persamaan. Melalui persamaan tersebut kita bisa menghitung dan meramalkan besarnya perubahan yang terjadi.
HUKUM-HUKUM GAS (persamaan keadaan)
Setiap zat alias materi, termasuk zat gas terdiri dari atom-atom atau molekul-molekul. Karena atom atau molekul mempunyai massa maka tentu saja zat gas juga mempunyai massa. Hubungan antara massa, suhu, volume dan tekanan zat gas dikenal dengan julukan persamaan keadaan. Jadi persamaan keadaan sebenarnya merupakan persamaan yang menggambarkan kondisi makroskopis zat gas.
Salah satu teknik yang sering dipakai dalam ilmu fisika untuk membantu menurunkan hubungan antara beberapa besaran adalah menjaga agar salah satu besaran selalu konstan (konstan = tetap = tidak berubah). Misalnya begini… Kalau kita ingin mengetahui hubungan antara suhu dan tekanan gas, maka volume gas dijaga agar selalu konstan. Kalau kita ingin mengetahui hubungan antara suhu dan volume gas maka tekanan gas dijaga agar selalu konstan. Demikian juga kalau kita ingin mengetahui hubungan antara tekanan dan volume gas maka suhu gas dijaga agar selalu konstan. Ingat ya, ketiga besaran ini saling mempengaruhi. Ketika salah satu besaran berubah, maka besaran yang lain akan berubah. Karenanya jika kita tidak menggunakan teknik ini, maka kita tidak akan bisa mengetahui secara pasti bagaimana hubungan kuantitatif antara satu besaran dengan besaran lain. Btw, dirimu dan diriku tidak perlu melakukan eskperimen lagi…. Om-om ilmuwan sudah melakukannya untuk kita. Tapi kalau dirimu ingin melakukan eksperimen lagi juga silahkan….
Hubungan antara volume dan tekanan gas (suhu gas konstan)
Almahrum Robert Boyle (1627-1691) melakukan eksperimen alias percobaan untuk menyelidiki hubungan kuantitaif antara tekanan dan volume gas. Percobaan ini dilakukan dengan memasukan sejumlah gas tertentu ke dalam sebuah wadah tertutup. Sampai pendekatan yang cukup baik, om obet menemukan bahwa apabila suhu gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, volume gas semakin berkurang. Demikian juga sebaliknya ketika tekanan gas berkurang, volume gas semakin bertambah. Istilah kerennya tekanan gas berbanding terbalik dengan volume gas. Hubungan ini dikenal dengan julukan Hukum Boyle. Secara matematis ditulis sebagai berikut :


Arti dari persamaan 1 adalah : pada suhu (T) konstan, apabila tekanan (P) gas berubah maka volume (V) gas juga berubah sehingga hasil kali antara tekanan dan volume selalu konstan. Dengan kata lain, apabila tekanan gas bertambah, maka volume gas berkurang atau sebaliknya jika tekanan gas berkurang maka volume gas bertambah, sehingga hasil kali antara tekanan dan volume selalu konstan.
Grafik yang menyatakan hubungan antara volume dan tekanan tampak seperti pada gambar di bawah.

Catatan :
Pertama, berdasarkan hasil percobaannya, om obet menemukan bahwa volume gas tidak mengalami perubahan secara teratur. Kadang cepat kadang lambat… Karenanya dirimu tidak perlu bingung mengapa garis pada grafik di atas kelihatan melengkung. Seandainya volume gas berubah secara teratur maka garis akan tampak lurus. Tapi kenyataannya tidak seperti itu. Waktu masih sekolah gurumuda bingung juga dengan persoalan ini. Kalau volume gas berbanding terbalik dengan tekanan, mengapa garisnya tidak lurus saja, kok harus pake melengkung segala. Baru tahu jawabannya di kemudian hari 
Kedua, tekanan yang dimaksudkan di sini adalah tekanan absolut, bukan tekanan ukur. Kalau bingung, baca lagi pembahasan mengenai Tekanan Dalam Fluida (materi fluida statis)
Hubungan antara suhu dan volume gas (tekanan gas bernilai tetap)
Seratus tahun setelah om Obet Boyle menemukan hubungan antara volume dan tekanan, seorang ilmuwan berkebangsaan Perancis yang bernama om Jacques Charles (1746-1823) menyelidiki hubungan antara suhu dan volume gas. Berdasarkan hasil percobaannya, om Cale menemukan bahwa apabila tekanan gas selalu konstan, maka ketika suhu gas bertambah, volume gas pun ikut2an bertambah. Sebaliknya ketika suhu gas berkurang, volume gas pun ikut2an berkurang.
Hubungan antara suhu dan volume dinyatakan melalui grafik di bawah…

Perubahan volume gas akibat adanya perubahan suhu, terjadi secara teratur. Karenanya dirimu tidak perlu heran mengapa garis pada grafik ini tampak lurus (garisnya memang miring tapi bentuknya lurus alias tidak melengkung). Apabila garis pada grafik digambarkan sampai suhu yang lebih rendah maka garis akan memotong sumbu di sekitar -273 oC. Berdasarkan banyak percobaan yang pernah dilakukan, ditemukan bahwa walaupun besarnya perubahan volume setiap gas berbeda-beda, tetapi ketika garis pada grafik V-T digambarkan sampai suhu yang lebih rendah maka garis selalu memotong sumbu di sekitar -273 oC. Jadi semua gas bernasib sama… Kita bisa mengatakan bahwa seandainya gas didinginkan sampai -273 oC maka volume gas = 0. Apabila gas didinginkan lagi hingga suhunya berada di bawah -273 oC maka volume gas akan bernilai negatif. Aneh khan kalau volume sampai bernilai negatif…. volume gas = 0 saja diriku sudah sulit membayangkannya apalagi volume gas bernilai negatif. Tentu saja tidak mungkin… Cukup logis kalau kita mengatakan bahwa -273 oC merupakan suhu terendah yang bisa dicapai. Karena garis memotong sumbu di sekitar -273 oC maka sesuai dengan kesepakatan bersama, di tetapkan bahwa suhu terendah yang bisa dicapai adalah -273,15 oC.
-273,15 oC dikenal dengan julukan suhu nol mutlak dan dijadikan acuan skala mutlak alias skala Kelvin. Kelvin adalah nama almahrum Lord Kelvin (1824-1907), mantan fisikawan Inggris. Pada skala ini, suhu dinyatakan dalam Kelvin (K), bukan derajat Kelvin (OK). Jarak antara derajat sama seperti pada skala celcius. 0 K = -273,15 oC dan 273,15 K = 0 oC. Suhu dalam skala Celcius dapat diubah menjadi skala Kelvin dengan menambahkan 273,15, suhu dalam skala Kelvin bisa diubah menjadi skala Celcius dengan mengurangi 273,15. Secara matematis, bisa ditulis sebagai berikut :
T (K) = T (oC) + 273,15
T (oC) = T (K) – 273,15
Keterangan :
T = Temperatur alias suhu
K = Kelvin
C = Celcius
Jika suhu dinyatakan dalam skala Kelvin maka grafik di atas akan tampak seperti gambar di bawah…

Grafik hubungan antara volume dan suhu ini mirip seperti grafik sebelumnya. Yang diubah hanya skala suhu saja. Perubahan volume gas tetap berbanding lurus dengan perubahan suhu gas, yang ditandai dengan garis lurus yang melalui titik asal (0). Berdasarkan grafik ini, bisa disimpulkan bahwa pada tekanan tetap, volume gas selalu berbanding lurus dengan suhu mutlak gas. Apabila suhu mutlak gas bertambah maka volume gas juga bertambah, sebaliknya apabila suhu mutlak gas berkurang maka volume gas juga berkurang. Hubungan ini dikenal dengan julukan hukum Charles. Secara matematis ditulis sebagai berikut :
Hukum Charles juga bisa ditulis seperti ini :
Arti dari persamaan 1 adalah : pada tekanan (P) konstan, apabila suhu mutlak (T) gas berubah maka volume (V) gas juga berubah sehingga hasil perbandingan antara suhu mutlak dan volume selalu konstan. Dengan kata lain, jika suhu mutlak gas bertambah, maka volume gas juga bertambah atau sebaliknya jika suhu mutlak gas berkurang maka volume gas juga berkurang, sehingga hasil perbandingan antara suhu dan volume selalu konstan.
Catatan :
Yang dimaksudkan dengan suhu mutlak gas adalah suhu gas yang dinyatakan dalam skala Kelvin. Apabila suhu masih dalam skala Celcius, maka ubah terlebih dahulu ke dalam skala Kelvin.
Hubungan antara Tekanan gas dan Suhu gas (volume gas bernilai tetap)
Setelah om Obet dan om Cale mengabadikan namanya dalam ilmu fisika, om Joseph Gay-Lussac (1778-1850) pun tidak mau ketinggalan. Berdasarkan percobaan yang dilakukannya, om Jose menemukan bahwa apabila volume gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, suhu mutlak gas pun ikut2an bertambah. Demikian juga sebaliknya ketika tekanan gas berkurang, suhu mutlak gas pun ikut2an berkurang. Istilah kerennya, pada volume konstan, tekanan gas berbanding lurus dengan suhu mutlak gas. Hubungan ini dikenal dengan julukan Hukum Gay-Lussac. Secara matematis ditulis sebagai berikut :
Hukum Gay-Lussac juga bisa ditulis seperti ini :
Arti dari persamaan 1 adalah : pada volume (V) konstan, apabila tekanan (P) gas berubah maka suhu mutlak (T) gas juga berubah sehingga hasil perbandingan antara tekanan dan suhu mutlak selalu konstan. Dengan kata lain, jika tekanan gas bertambah, maka suhu mutlak gas juga bertambah atau sebaliknya jika tekanan gas berkurang maka suhu mutlak gas juga berkurang, sehingga hasil perbandingan antara tekanan dan suhu selalu konstan.
Catatan :
Yang dimaksudkan dengan suhu mutlak gas adalah suhu gas yang dinyatakan dalam skala Kelvin. Apabila suhu masih dalam skala Celcius, maka ubah terlebih dahulu ke dalam skala Kelvin.
Perlu diketahui bahwa hukum Boyle, hukum Charles dan hukum Gay-Lussac memberikan hasil yang akurat apabila tekanan dan massa jenis gas tidak terlalu besar. Di samping itu, ketiga hukum tersebut juga hanya berlaku untuk gas yang suhunya tidak mendekati titik didih. Berdasarkan kenyataan ini, bisa disimpulkan bahwa hukum Boyle, hukum Charles dan hukum Gay-Lussac tidak bisa diterapkan untuk semua kondisi gas. Oya, yang dimaksudkan dengan gas di sini adalah zat gas yang kita temui dalam kehidupan sehari-hari. Istilah kerennya gas riil alias gas nyata… misalnya oksigen, nitrogen dkk…
Karena hukum Boyle, Hukum Charles dan hukum Gurumuda… eh hukum Gay-Lussac tidak bisa berlaku untuk semua kondisi gas riil, maka kita memerlukan sebuah pendekatan baru. Pada episode berikutnya, dirimu akan berkenalan dengan konsep Gas Ideal alias gas sempurna. Gas ideal ini tidak ada dalam kehidupan sehari-hari. Gas ideal hanya sebuah model ideal saja, mirip seperti konsep benda tegar dan fluida ideal. Jadi kita menganggap ketiga hukum gas di atas berlaku dalam semua kondisi gas ideal.
Catatan :
Pertama, dalam menyelesaikan soal-soal hukum gas, suhu alias temperatur harus dinyatakan dalam skala Kelvin
Kedua, apabila tekanan gas masih berupa tekanan ukur, ubah terlebih dahulu menjadi tekanan absolut. Tekanan absolut = tekanan atmosfir + tekanan ukur
Contoh soal 1 : Hukum Boyle (hubungan volume vs tekanan pada suhu konstan)
Pada suhu 20 oC, gas karbon dioksida memiliki volume = 20 liter dan tekanan ukur = 4 x 105 N/m2. Berapakah volume gas jika tekanan ukurnya diturunkan menjadi 2 x 105 N/m2 ?
Panduan jawaban :
1 N/m2 = 1 Pa (satu pascal)
Tekanan atmosfir (Patm) = 1,01 x 105 Pa = 1,01 x 102 kPa = 101 kPa (kPa = kilo pascal)
Tekanan ukur 1 = 4 x 105 N/m2 = 400 kPa
Tekanan ukur 2 = 2 x 105 N/m2 = 200 kPa
Yang diketahui adalah tekanan ukur. Oprek dulu menjadi tekanan absolut. Tekanan absolut = Tekanan atm + Tekanan ukur
P1 = Patm + Pukur 1 = 101 kPa + 400 kPa = 501 kPa
P2 = Patm + Pukur 2 = 101 kPa + 200 kPa = 301 kPa
V1 = 20 liter
V2 = ?
Sekarang kita tumbangkan soal
Jika tekanan diturunkan, maka volume gas bertambah menjadi 33,3 liter
33,3 L = 33,3 x 103 mL = 33,3 x 103 cm3
33,3 L = 33,3 dm3 = 33,3 x 10-3 m3
Keterangan :
L = liter
mL = mili liter
cm3 = centimeter kubik
dm3 = desimeter kubik
m3 = meter kubik
Contoh soal 2 : Hukum Charles (hubungan volume vs suhu pada tekanan konstan)
Pada tekanan 101 kPa, suhu sejumlah gas oksigen = 20 oC dan volumenya = 20 liter. Berapakah volume gas oksigen jika suhunya dinaikan menjadi 40 oC ?
Panduan jawaban :
T1 = 20 oC + 273 = 293 K
T2 = 40 oC + 273 = 313 K
V1 = 20 L
V2 = ?
Jika suhu gas oksigen dinaikkan maka volumenya juga bertambah menjadi 21,4 Liter. Besarnya pertambahan volume gas adalah : 21,4 liter – 20 liter = 1,4 liter
Contoh soal 3 : Hukum Gay-Lussac (hubungan tekanan vs suhu pada volume konstan)
Pada suhu 20 oC, tekanan ukur ban mobil = 300 kPa. Setelah mobil melaju dengan kecepatan tinggi, suhu di dalam ban naik menjadi 40 oC. Berapa tekanan di dalam ban sekarang ?
Panduan jawaban :
T1 = 20 oC + 273 = 293 K
T2 = 40 oC + 273 = 313 K
P1 = Patm + Pukur 1 = 101 kPa + 300 kPa = 401 kPa
P2 = ?

Kurangi dulu dengan tekanan atmosfir
P2 = 428,4 kPa – 101 kPa = 327,4 kPa
Setelah suhu di dalam ban meningkat menjadi 40 oC, tekanan dalam ban bertambah menjadi 327,4 kPa. Ini adalah tekanan ukur. Besarnya pertambahan tekanan adalah : 327,4 kPa – 300 kPa = 27,4 kPa
Kalau dihitung dalam persentase :

Kenaikan tekanan di dalam ban sebesar 0,09 %
Berikut ini seperangkat peralatan perang dan amunisi yang mungkin dibutuhkan :
Volume
1 liter (L) = 1000 mililiter (mL) = 1000 centimeter kubik (cm3)
1 liter (L) = 1 desimeter kubik (dm3) = 1 x 10-3 m3
Tekanan
1 N/m2 = 1 Pa
1 atm = 1,013 x 105 N/m2 = 1,013 x 105 Pa = 1,013 x 102 kPa = 101,3 kPa (biasanya dipakai 101 kPa)
Pa = pascal
atm = atmosfir
Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Teori atom dan Teori kinetik

Sekolah Kita

Kamis, 28 Januari 2010

                                                                Teori atom dan Teori kinetik

Sekolah Kita

Pengantar
Teori atom dan teori kinetik. Istilah apa lagi ini, bikin pusink saja. Teori atom dan teori kinetik tuh semacam kue, enak sekali… terasa lezat dan nikmat di otak… hiks2… Omong soal atom, pasti langsung ingat bom atom. Hirosima dan nagasaki langsung hancur lebur dalam sekejap, bikin orang jepang pada stress. Amerika dan kroni2nya senang, Indonesia pun ikut2an senang, lumayan mempercepat kemerdekaan. Si Dai Nippon ini sudah keterlaluan jadi sekali-sekali dihajar saja biar kapok. Untung ada fisika ya….  Btw, sebenarnya atom tuh apa sich ? sejenis roti bakar-kah
Sebelum kita membahas teori kinetik gas dkk, terlebih dahulu kita pelajari teori atom dan teori kinetik. Bagaimanapun ini merupakan pengetahuan dasar yang perlu dipahami dengan baik. Seperti biasa, dari balik blog gurumuda mengucapkan selamat bertempur, semoga dirimu tidak lari terbirit-birit… he2…. piss….
Teori atom
Sejak ribuan tahun lalu, orang yunani kuno percaya bahwa setiap zat murni (misalnya emas murni, besi murni ;) , tembaga dll) terdiri dari atom-atom. Orang yunani sok tahu saja. Menurut mereka, kalau sebuah zat murni dipotong menjadi kecil, lalu potongan kecil tersebut dipotong lagi, lalu di potong lagi… demikian seterusnya, maka akan ada potongan terkecil yang tidak bisa dipotong lagi. Potongan terkecil yang tidak bisa dipotong lagi itu diberi julukan “atom”. Atom artinya “tidak dapat dibagi” (bahasa orang yunani)
(Pada waktu itu memang atom dianggap tidak bisa dibagi lagi. Tapi di kemudian hari beberapa om jenius menemukan elektron dan inti atom (proton dan neutron) sehingga anggapan bahwa atom tidak bisa dibagi lagi telah ditendang. Jadi atom tuh terdiri dari elektron (bermuatan negatif) dan inti atom. Elektron-elektron berjingkrak-jingkrak mengitari inti atom. Di dalam inti atom terdapat proton (bermuatan positif) dan neutron (netral alias tidak bermuatan). Bukan cuma ini, masih ada lagi… pernah dengar quark dkk ? nanti baru kita oprek dalam pokok bahasan tersendiri… Ok, kembali ke laptop)
Perlu diketahui bahwa teori atom juga punya saingan. Kalau dalam dunia perpolitikan, istilahnya oposisi. Kalau dalam dunia pertemanan, istilahnya lawan alias musuh bebuyutan. hehe… Ada sebuah teori lain, namanya teori kontinu (kontinu = berkelanjutan). Teori ini mengatakan bahwa zat murni tuh bisa dibagi lagi sampai tak berhingga. Menurut teori ini tidak ada yang namanya potongan terkecil. Potongan terkecil masih bisa dipotong-potong dan diulek-ulek lagi menjadi lebih kecil. Dipotong lagi dan diulek lagi… demikian seterusnya menjadi tak berhingga.
Dari kedua teori ini, mana yang benar ? Teori atom yang benar atau teori kontinu ? Mene ketehe…  Dalam ilmu fisika, setiap teori akan diakui secara ilmiah kalau teori tersebut bisa dibuktikan dalam eksperimen alias percobaan. Nah, pada abad 18, 19 dan 20, melalui eksperimen yang dilakukan oleh om-om ilmuwan yang kurang kerjaan, teori atom ternyata terbukti benar (kebanyakan dibuktikan dari analisis reaksi kimia). Masa sich ? yawdah kalo dirimu tidak percaya…
Sebelum membahas pembuktian teori atom, terlebih dahulu baca pesan-pesan berikut ini :
Unsur, senyawa, molekul dan atom
Dirimu sudah dapat pelajaran kimia tentang unsur dan senyawa ? mudah2an belum  Gurumuda ulas lagi ya, biar dirimu lebih nyambung dengan penjelasan selanjutnya…
Unsur merupakan zat murni yang tidak dapat dibagi lagi menjadi zat lain secara kimia, misalnya emas (Au), besi (Fe), tembaga (Cu), seng (Zn), Natrium (Na), Calsium (Ca), klor (Cl), Nitrogen (N), oksigen (O), hidrogen (H) dkk. Selain unsur, ada juga yang namanya senyawa. Senyawa terdiri dari unsur-unsur. Karena terdiri dari unsur-unsur, maka senyawa masih bisa dibagi lagi menjadi unsur-unsur. Contoh senyawa adalah air. Bagian terkecil dari unsur adalah atom, sedangkan bagian terkecil dari senyawa adalah molekul. Molekul terdiri dari atom-atom yang saling nempel.
Biar dirimu lebih paham, gurumuda pakai penjelasan panjang lebar saja. Pernah lihat emas murni (emas 24 karat) ? emas murni merupakan salah satu contoh unsur. Emas murni sebenarnya terdiri dari atom-atom emas (Au). Atau contoh lain…. Pernah lihat potongan besi ? Potongan besi juga merupakan salah satu contoh unsur. Besi terdiri dari atom-atom besi (Fe). Intinya, yang namanya unsur tuh zat murni yang terdiri dari atom-atom sejenis. Kalau atom emas ya atom emas semua, kalau atom besi ya atom besi semua. Tidak pake campur. Unsur sudah. Sekarang giliran senyawa. Dirimu pernah lihat air khan ? Air yang sering dirimu lihat, pegang dan minum tuh terdiri dari molekul-molekul air (rumus kimianya H2O). Molekul air terdiri dari dua atom Hidrogen (H) dan satu atom oksigen (O). Lanjut ya….
Berikut ini beberapa pembuktian teori atom :
Pertama, hukum perbandingan tetap.
Hukum perbandingan tetap mengatakan bahwa apabila unsur-unsur bergabung menjadi senyawa, maka senyawa yang terbentuk memiliki perbandingan massa yang sama. Contohnya garam… Ingat ya, garam yang kita lihat merupakan suatu senyawa yang terdiri dari molekul-molekul garam (rumua kimianya NaCl). Secara alami, molekul garam selalu terbentuk dari 23 bagian natrium (Na) dan 35 bagian klor (Cl). Musuh bebuyutan teori atom tidak bisa menjelaskan hal ini, tetapi teori atom bisa menjelaskannya. Menurut teori atom, atom merupakan bagian terkecil dari unsur. Karenanya atom tentu punya massa. Nah, perbandingan massa unsur-unsur yang membentuk suatu senyawa pasti berkaitan dengan massa relatif atom-atom pembentuk unsur tersebut. Berdasarkan jumlah setiap unsur yang membentuk senyawa, om-om ilmuwan menentukan massa relatif atom. Dikatakan relatif karena massa relatif atom suatu unsur dibandingkan dengan massa relatif atom unsur lain…
Hidrogen merupakan atom yang paling ringan, karenanya digunakan sebagai patokan. Massa relatif atom hidrogen (H) diberi nilai 1. Dengan menggunakan massa relatif atom hidrogen sebagai patokan, maka massa relatif atom karbon (C) diberi nilai 12, massa relatif atom oksigen (O) diberi nilai 16 dst… (lihat saja tabel periodik unsur). Massa relatif atom karbon = 12 itu artinya massa satu atom karbon 12 kali lebih besar dari massa satu atom hidrogen (H). Massa relatif atom oksigen = 16 itu artinya massa satu atom oksigen 16 kali lebih besar dari massa satu atom Hidrogen (H). Yang gurumuda ulas ini baru massa relatif atom, bukan massa atom.
Dalam Sistem Internasional (SI) kita mempunyai standar massa, yakni sebuah platina iridium yang disimpan di lembaga berat dan ukuran internasional (Perancis). Berdasarkan perjanjian internasional, massa platina iridium tersebut adalah 1 kg. Ini merupakan kilogram standar. Nah, dalam skala atomik, kita juga mempunyai standar massa kedua, yakni atom karbon 12C. Berdasarkan perjanjian internasional, massa 1 atom karbon 12C adalah 12,0000 satuan massa atom terpadu (unified atomic mass units, disingkat u).
1 u = 1,66 x 10-27 kg.
Massa 1 atom Karbon (C) = 12,0000 u, massa 1 atom Hidrogen (H) = 1,0078 u, massa 1 atom Oksigen (O) = 15,9994 u, massa 1 atom Natrium = 22,9897 u dst… Mengenai massa atom, selengkapnya bisa dilihat di tabel periodik unsur.
Selain massa atom, ada juga yang namanya massa molekul. Massa molekul merupakan jumlah total massa atom-atom yang membentuk suatu molekul. Contoh… massa molekul garam (NaCl) = massa satu atom Natrium (Na) + massa satu atom Klor (Cl). Massa molekul air (H2O) = massa 2 atom hidrogen (H) + massa satu atom oksigen (O).
Kedua, gerak brown
Bukan brondong tapi brown. he2… Kisahnya begini… Pada jaman dahulu kala, hiduplah seorang ahli biologi berkebangsaan Inggris yang bernama om Robert Brown. Katanya Om obet waktu itu sedang meneliti serbuk sari yang dimasukkan ke dalam air (Tahun 1827). Air dan serbuk sari dilihat pake mikroskop. Om obet kaget bukan main-main karena merasa aneh setelah melihat si serbuk sari bergerak sendiri. Aneh karena air khan lagi diam, masa serbuk sari bergerak. Arah gerakan serbuk sari sembarang saja tapi berkelanjutan alias kontinu. Biar paham, tataplah gambar di bawah dengan penuh kelembutan.

Waktu itu om obet menduga bahwa gerakan tersebut merupakan suatu bentuk kehidupan. Maksudnya si serbuk sari hidup, sehingga bisa jalan-jalan (serbuk sari termasuk zat organik. Zat organik = zat hidup, sedangkan zat tak organik = zat yang tak hidup alias benda mati). Tapi dugaannya keliru besar karena partikel tak organik yang berukuran kecil seperti serbuk sari juga bergerak ketika dimasukkan dalam air. Gerakan seperti ini dinamakan gerak brown, pake nama om obet brown.
Penemuan om obet ini belum bisa dijelaskan sampai dikembangkannya teori kinetik. Pending sebentar… Ikuti terus kisahnya ya, makin asyik saja neh….
Teori kinetik
Kinetik artinya bergerak (bahasa orang yunani). Teori kinetik mengatakan bahwa setiap zat terdiri dari atom-atom atau molekul-molekul dan atom-atom atau molekul-molekul tersebut bergerak terus menerus secara sembarangan.
Ketika bergerak, atom atau molekul pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK) dan momentum (p). Energi kinetik : EK = ½ mv2. Sedangkan momentum : p = mv. Kayanya bukan cuma energi kinetik (EK) dan momentum (p) saja, tetapi gaya (F) juga. Atom atau molekul khan jumlahnya banyak tuh. Ketika mereka bergerak ke sana kemari, pasti ada kemungkinan terjadi tumbukan. Jadi gaya muncul karena adanya perubahan momentum ketika terjadi tumbukan. Ingat lagi pembahasan mengenai impuls dan momentum. Kalau sudah lupa, segera meluncur ke TKP…
Kita bisa mengatakan bahwa teori kinetik sebenarnya didasarkan pada energi kinetik, momentum dan gaya. Ketiga hal ini yang kita pelajari pada pokok bahasan dinamika gerak (hukum newton, impuls dan momentum). Bedanya, dalam teori kinetik kita menerapkan ilmu dinamika pada tingkat atom atau molekul. Teori kinetik dikembangkan oleh om obet Boyle (1627-1691), om Daniel Bernoulli (1700-1782), om Jimi Joule (1818-1889), om Kronig (1822-1879), om Rudolph Clausius (1822-1888) dan om Clerk Maxwell (1831-1879).
Adanya teori kinetik ini bisa menjelaskan penemuan om brown di atas. Menurut teori kinetik, serbuk sari bergerak karena didorong oleh molekul-molekul air yang bergerak dengan cepat. Jumlah molekul air sangat banyak, karenanya serbuk sari ditendang dari berbagai arah.
Berdasarkan hukum perbandingan tetap dan adanya penemuan gerak brown, teori atom semakin diyakini oleh para ilmuwan. Btw, teori atom khan mengatakan bahwa setiap zat terdiri dari atom-atom. Dalam hal ini, atom merupakan potongan terkecil dari setiap zat. Dengan demikian atom tentu saja punya ukuran. Nah, masalahnya sekarang, ukuran atom tuh berapa ? panjangnya berapa, lebarnya berapa, tingginya berapa… Minimal harus ada eksperimen atau perhitungan matematis yang bisa mendeteksi ukuran atom.
Pada tahun 1905, eyang Einstein ambil alih… Waktu itu eyang Einstein menyelidiki ukuran atom secara teoritis. Berdasarkan teori atom, teori kinetik dan data yang diperoleh melalui eksperimen, eyang menemukan bahwa diameter atom adalah sekitar 10-10 m. Jadi diameter atom diperoleh melalui perhitungan. Cara menghitungnya bagaimana ? sabar ya, neh baru pokok bahasan awal. Tunggu semua materi teori kinetik gas dimuat dulu, biar dirimu lebih nyambung dengan penalaran yang dibuat eyang Einstein sebelum menghitung ukuran atom. Karena ukuran atom telah ditemukan, maka teori atom dinyatakan sah. Teori kinetik pun ikut2an sah.
Dalam buku autobiografinya, eyang menulis demikian : “Tujuan utama saya adalah menemukan berbagai kenyataan yang membenarkan bahwa atom mempunyai ukuran tertentu. Ketika dalam proses penyelidikan, saya menemukan bahwa sesuai dengan teori atomistik, seharusnya ada gerakan-gerakan partikel mikroskopik yang bisa diamati secara terbuka, tanpa mengetahui bahwa gerak brown telah lama dikenal“. Oya, buku Autobiografi tuh buku yang ditulis oleh seseorang mengenai kisah hidupnya.
Berdasarkan apa yang ditulis eyang Einstein dalam buku autobiografinya, kita bisa mengatakan bahwa eyang sendiri tidak tahu sedikit pun mengenai kisah om obet yang menemukan gerak brown. Eyang Einstein bahkan meramalkan adanya gerak brown berdasarkan gagasan-gagasan teoritis. Teoritis tuh cuma teori-teori saja, tidak ada eksperimen alias percobaan. Agar bisa seperti eyang Einstein, logika (otak kiri) dan imajinasi (otak kanan) harus kuat. Bye… see u
Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga